Seaplus: Streamlining a safe execution of
C/C++ code from Erlang

Seaplus ®

Organisation: Copyright (C) 2018-2024 Olivier Boudeville
Contact: about (dash) seaplus (at) esperide (dot) com
Creation date: Sunday, December 23, 2018

Lastly updated: Sunday, January 14, 2024

Version: 1.1.12

Status: Stable

Dedication: Users and maintainers of the Seaplus bridge.

Abstract: The role of the Seaplus bridge (part of the Ceylan project)
is to control C or C++ code from Erlang, not as NIF but thanks
to a port, and to streamline the corresponding integration pro-
cess.

We present here a short overview of these services, to introduce
them to newcomers. The next level of information is either to
browse the Seaplus API documentation or simply to read the
corresponding source files, which are intensely commented and
generally straightforward.

The latest version of this documentation is to be found at the official Seaplus

website (http://seaplus.esperide.org).
The documentation is also mirrored here.

http://seaplus.esperide.org/
https://github.com/Olivier-Boudeville/Ceylan
api-doc/index.html
https://github.com/Olivier-Boudeville/Ceylan-Seaplus
http://seaplus.esperide.org
http://seaplus.esperide.org
https://olivier-boudeville.github.io/Ceylan-Seaplus/seaplus.html

Table of Contents

Overview
Usage
Wrapping Up
Licence

Current Stable Version, Download & Build
Using Cutting-Edge GIT
Using Rebar3
Testing Seaplus oL

Miscellaneous Technical Points
Seaplus Log System L
Customising Function Bindings on the Erlang Side
Debugging a Seaplus-based Driver
Testing Seaplus L
Towards a more General C/C++ Interface
C/C++ Code Formatting

Issues & Planned Enhancements
Support

Seaplus Inner Workings

Please React!

Ending Word

10

12

13
13
13
14

14
14
15
16
21
21
21

21

22

22

22

22

Overview

A typical use-case is having a C or C++ library of interest that we
would like be able to use from Erlang, whereas, for any reason (availability
of sources, complexity, size, performance or interest), recoding it (in Erlang) is
not desirable.

However tempting it may be to integrate tightly C/C++ code to the Erlang
VM (typically through a NIF), one may prefer trading maximum performances
for safety, and run that C/C++ code (which is often at last partly foreign, hence
possibly unreliable) into a separate, isolated (operating system) process.

Then the integrated code will not be able to crash the Erlang application,
and for example any memory leak it would induce would only affect its own OS
process (that, moreover, depending on the use case, may be safely restarted) -
not the application one.

Indeed, taking into account the Erlang Interoperability Tutorial, the follow-
ing approaches are the most commonly considered ones when having to make
C/C++ code available from Erlang:

e raw ports and linked-in drivers: they are mostly obsolete for the task
at hand (superseded by better counterparts)

e os:cmd/1: a rudimentary solution that offers little control and requires
much syntactic parsing effort

e custom socket-based protocol: quite low-level and complicated

e NIF: as mentioned, they may jeopardise the VM (depending on the use
case, this may be acceptable or not)

e C-Node and, now, ei (previously Erl Interface): this is the combination
that we preferred for Seaplus, and that we tried to streamline/automate
here, at least partially

In a nutshell, this approach consists on spawning a "fake" Erlang node writ-
ten in C (the C-Node) and using the standard Erlang external term format in
order to communicate with it (relying for that on the ei facilities). Doing so
allows a seamless communication to happen, in spite of language heterogeneity.

C-Node and Erl Interface/ei help a lot, yet, as shown in this reference ex-
ample, quite a lot of boiler-plate/bridging code (home-made encoding and con-
ventions) remains needed.

The goal of Seaplus is to reduce that interfacing effort, thanks to a
set of generic, transverse functions on either side (modules in Erlang, a library in
C/C++) and the use of metaprogramming (i.e. the Seaplus parse transform) in
order to generate at least a part of the code needed in both sides, while leaving
to the developer enough leeway so that he can define precisely the mapping
interface that he prefers (e.g. with regards to naming, types introduced and
used, management of resource ownership, etc.).

As a result, the result of a Seaplus integration can be seen as an easily
obtained ei-based C-Node on a bit of steroids.

Ceylan-Seaplus relies on various facilities offered by the Ceylan-Myriad
toolbox.

The project repository is located here.

http://erlang.org/doc/tutorial/nif.html
http://erlang.org/doc/tutorial/users_guide.html
http://erlang.org/doc/tutorial/cnode.html
http://erlang.org/doc/man/ei.html
http://erlang.org/doc/tutorial/erl_interface.html
http://erlang.org/doc/tutorial/erl_interface.html#erlang-program
http://erlang.org/doc/tutorial/erl_interface.html#erlang-program
http://myriad.esperide.org
https://github.com/Olivier-Boudeville/Ceylan-Seaplus

Usage

So we would have here a (possibly third-party) service (typically a library, di-
rectly usable from C, offering a set of functions) that we want to integrate, i.e.
to make available from Erlang.

Let’s suppose that said service is named Foobar, and that the functions
it provides (hence on the C side) are declared as (typically in some foobar.h
header file!, referring to a possibly opaque foobar.so library - i.e. whose sources
may remain unknown):

#include <stdbool.h>
struct foo_data { int count; float value } ;

enum foo_status {low_speed,moderate_speed,full_speed};
enum tur_status {tur_value,non_tur_valuel};

int foo(int a);

struct foo_data * bar(double a, enum foo_status status);
enum tur_status baz(unsigned int u, const char * m);
bool tur();

char * frob(enum tur_status);

With the definition of this example, we ensured to reproduce real-life situa-
tions, like atoms vs enums, dynamic memory allocation (for the returned struct)
and runtime failures (since calling foo(0) is to trigger a division by zero).

What would be the corresponding ideal Erlang interface to make such a
fantastic Foobar service available?

First of all, multiple corresponding Erlang APIs can be considered, and
some design choices have to be made (we can foresee that some are more ele-
gant/convenient than others, and that a perfect, universal, one-size-fit-all auto-
mated mapping does not seem so achievable).

An easy step is to decide, at least in most cases, to map each of these C
functions to an Erlang counterpart function that, unsurprisingly, bears the same
name and most of the time has the same arity, and to have them gathered into
a single module that would be best named foobar (and thus shall be defined in
foobar.erl).

We believe that, in order to rely on a convenient Erlang-side API for this
service, adaptations have to be made (e.g. with regard to typing), and thus
that it should preferably be defined in an ad-hoc manner (i.e. it should be
tailor-made, rather than be automatically generated through a mapping possibly
suffering from impedance mismatch).

So such a service-specific API shall be devised by the service integrator (i.e.
the developer in charge of the integration of the C/C++ code to Erlang). But
how?

At the very least, what will be offered on the Erlang side by our foobar
module shall be somehow specified. A very appropriate way of doing so is to
list (only) the type specifications of the targeted counterpart functions meant
to be ultimately available (defined and exported) from Erlang, like in?:

1See the full, unedited version of the foobar.h test header that is actually used.

http://erlang.org/doc/reference_manual/typespec.html
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/test/c-test/foobar/inc/foobar.h

-module (foobar) .
-include("seaplus.hrl").

-record(foo_data, {count :: integer(), value :: float()}).
-type foo_data() :: #foo_data{}.

-type foo_status() :: ’low_speed’|’moderate_speed’|’full_speed’.
-type tur_status() :: ’tur_value’|’non_tur_value’.

-spec foo(integer()) -> integer().

-spec bar(float(), foo_status()) -> foo_data().

-spec baz(integer(), text_utils:ustring()) -> tur_status().
-spec tur() -> boolean().

-spec frob(tur_status()) -> text_utils:ustring().

The Seaplus header include allows notably to mark this foobar module as a
service stub (so that the build system can determine this module is to be fleshed
out).

It can be included in a more OTP-compliant fashion with:

-include_lib("seaplus/include/seaplus.hrl").

Comments (description, usage, examples) are also expected to be joined to
these specs, they are omitted in this documentation only for brevity.

Facility functions that all integrated services will need, and whose signa-
ture (if not implementation) would be the same from a service to another (e.g.
to start/stop this service from Erlang), will also certainly be needed.

However, listing these facility functions in our foobar module would offer lit-
tle interest, should they involve no service-specific part; so these extra functions
are to remain implicit here3.

These service-level built-in functions automatically defined by Seaplus of
user interest are, notably:

e start/0: starts said service, a {driver_crashed,ErrorReason} excep-
tion being thrown should the driver or the integrated library crash (e.g.

SEGV)

e start_link/0: starts and links said service to the user process, expected
to receive an EXIT signal (and thus, unless trapping them, crashing in
turn) should the driver or the integrated library crash

e restart/0: restarts the service, typically after it was started with start/0,
failed and threw an exception (that was caught by the user code)

e stop/0: stops the service

2See the full, unedited version of the foobar.erl API module that is actually used, together
with its foobar.hr] header file.

https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/test/c-test/foobar.erl
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/test/c-test/foobar.hrl

Of course such a module, as it was defined above (i.e. just as a set of function
specifications, with no implementation thereof), is useless and would not even
compile as such. But the Seaplus parse transform will automatically enrich and
transform it so that, once the C part (the driver) is available, the Foobar service
becomes fully usable from Erlang, with no extra boilerplate code to be added
by the Erlang integrator.

More precisely, for each of the function type specifications defined by the user
in that module, a corresponding bridging implementation will be generated on
the Erlang side and added (unless the foobar module already includes one, so
that the user can selectively override the Seaplus code generation), whilst all
the needed facility functions will be included as well.

Here is a corresponding (mostly meaningless) usage example® of this foobar
module, when executed from any given process (e.g. a test one):

foobar:start(),

MyFooData = foobar:bar(3.14,full_speed),
NewCount = foobar:foo(MyFooData#foo_data.count),
Res = case foobar:tur() of

true ->
foobar:baz(NewCount, "Hello");
false ->
non_tur_value
end,

io:format ("Having: ~s™n", [foobar:frob(Res)]),
foobar:stop().

At this point, one may think that, thanks to these function specs, the full
counterpart C bridging code might have been automagically generated as well,
in the same movement as the Erlang bridging code? Unfortunately, not exactly!
At least, not yet; maybe some day (if ever possible and tractable). Currently:
only parts of it are generated.

C-side elements will have been produced indeed by the Seaplus parse-transform
(notably the function mapping include, used to map functions on either sides,
and also, if not already existing, a compilable template of the C driver), but
the conversion (thanks to ei now) from the Erlang terms received by the port
into arguments that will feed the C functions and on the other way round (i.e.
from the C results to the Erlang terms that shall be sent back) is still left to
the service integrator.

3Note though that, at least for some services, specific initialisation/tear-down functions
may exist in the vanilla, C version of that service. In that case, they should be triggered by
the Seaplus-exposed start/stop service primitives.

So, for each facility function start/0, start_link/0 and stop/0, the Seaplus parse trans-
form determines whether it is already defined in the service at hand (i.e., for example, whether
the user defined specifically a foobar:start/0 function). If yes, then Seaplus enriches auto-
matically that code with the one needed for its own initialisation (Seaplus’one taking place
before the service’s initialisation). If no, then Seaplus defines a brand new start/0 that is
limited to its own needs.

As a result, from the point of view of the service user, in all cases the service can be started
or stopped with a single call (possibly taking care under the hood of both Seaplus and the
service itself).

4See the full, unedited, richer version of the foobar test.erl module used to test the Erlang-
integrated service (emulating an actual use of that service).

http://erlang.org/doc/man/ei.html
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/test/c-test/foobar_test.erl

This work remains, yet it is also a chance to better adapt the bridging code
to the interfacing contract one would like to be fulfilled, for example with regard
to resource ownership. Indeed, should the C part take pointers as arguments,
shall it delete them once having used them? Conversely, should a C function
return a pointer to a dynamically allocated memory, who is responsible for the
eventual deallocation of it? How the C implementation can maintain a state of
its own between calls?

To address these questions, service-specific choices and conventions have to
be applied, and this information cannot be generically found or deduced by an
algorithm (including of course the Seaplus one) from the C/C++ pre-existing
code. As a result, we believe that in all cases some effort remains to be done by
the service integrator.

So: we saw that thanks to Seaplus nothing special had to be done on the
Erlang side (the foobar.erl stub will suffice; refer to the Customising Function
Bindings on the Erlang Side section in order to address more specific/advanced
needs), and that the C side deserved some love to be complete; what kind of
extra work is needed then?

Seaplus generated an header file, foobar_seaplus_api_mapping.h (see here
for a small, unedited example of it), in charge of telling that C side about the
actual encoding of the service functions across the bridge. In our example this
generated header would contain:

#define FOO_1_ID 1
#define BAR_2_ID 2
#define BAZ_2_ID 3
#define TUR_O_ID 4
#define FROB_1_ID 5

This indicates that for example the baz/2 Erlang function, as hinted by
its type specification in foobar.erl, has been associated by Seaplus to the
BAZ_2_ID (namely, of course: ${FUNCTION_NAME}_${ARITY}_ID) identifier (whose
value happens to be 3 here®).

The C part of the bridge (i.e., the service driver), typically defined in
foobar_seaplus_driver.c, is thus to include that foobar_seaplus_api_mapping.h
generated header in order to map the Erlang function identifier in a call request
to its processing.

Should no such driver implementation already exist, Seaplus will generate a
template version of it (a template that can nevertheless be successfully compiled
and linked), which will include everything needed but the (service-specific) C
logic that shall be added by the service integrator in order to:

1. convert the received arguments (Erlang terms) into their C counterparts
(see seaplus_getters.h for that, typically the read_*_parameter func-
tions)

2. call the corresponding C integrated function

50f course no code should rely on that actual value, which could change from a generation
to another, or as the API is updated; only the (stable by design) BAZ_2_ID identifier shall be
trusted by user code.

https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/doc/foobar_seaplus_api_mapping.h
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/include/seaplus_getters.h

3. convert its result the other way round, so that a relevant Erlang term
is returned (see seaplus_setters.h for that, typically the write_x_result
functions)

See the full, unedited version of the generated foobar seaplus driver.c tem-
plate corresponding to the Foobar service (one may note the placeholders in each
case branch of the function identifier switch).

Seaplus offers moreover various helpers to facilitate the writing of this C
driver (i.e. the filling of said generated template); they are gathered in the
Seaplus library (typically 1ibseaplus.so) and available by including the Seaplus
C header file, seaplus.h (see here).

Based on these elements, the actual bridging code can be written, like in the
following shortened version. The FOO_1_ID case is among the simplest possible
call, while the BAR_2_ID one is more complex; for both calls no memory leak
is involved (see the full source of this test driver, notably for the conversion
helpers used for bar/2):

[...]
int main()
{

byte * current_read_buf;
input_buffer read_buf = ¤t_read_buf;

// Provided by the Seaplus library:
start_seaplus_driver (read_buf);

// For the mandatory result:
output_buffer output_sm_buf;

/* Reads a full command from (receive) buffer, based on its initial length:

*

* (a single term is expected hence read)
*

*/

while (read_command(read_buf) > 0)

{

// Current index in the input buffer (for decoding purpose):
buffer_index index = 0;

/* Will be set to the corresponding Seaplus-defined function identifier (e.g.
* whose value is FOO_1_ID):

*

x/

fun_id current_fun_id;

/* Will be set to the number of parameters obtained from Erlang for the
* function whose identifier has been transmitted:

https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/include/seaplus_setters.h
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/doc/foobar_seaplus_driver.c
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/doc/foobar_seaplus_driver.c
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/include/seaplus.h
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/test/c-test/foobar_seaplus_driver.c

*
*/

arity param_count;
read_function_information(read_buf, &index, ¤t_fun_id, ¶m_count);

prepare_for_command (&output_sm_buf) ;

// Now, taking care of the corresponding function call:
switch(current_fun_id)

{

case FOO_1_ID:
// -spec foo(integer()) -> integer() vs int foo(int a)
check_arity_is(1, param_count, FOO_1_ID);

/*

* So we expect the (single, hence first) parameter to
* be an integer:

*/

long foo_a_param = read_int_parameter(read_buf, &index);

// Actual call:
int foo_result = foo((int) foo_a_param);

// Sending of the result:
write_int_result(&output_sm_buf, foo_result);

break;
case BAR_2_ID:

/* -spec bar(float(), foo_status()) -> foo_data() vs
* struct foo * bar(double a, enum foo_status status)
*/

check_arity_is(2, param_count, BAR_2_ID);

// Getting first the Erlang float:
double bar_double_param = read_double_parameter(read_buf, &index);

// Then the atom for foo_status():
char * atom_name = read_atom_parameter (read_buf, &index);

// Converting said atom for the C API:
enum foo_status bar_status_param =

get_foo_status_from_atom(atom_name) ;

free(atom_name) ;

// Actual call (ownership of struct_res transferred to this caller):
struct foo_data * struct_res = bar(bar_double_param,
bar_status_param) ;

// Defining a separated writing function is more convenient here:
write_foo_data_record_from_struct (&output_sm_buf, struct_res);

free(struct_res);

break;
[...]
default:

raise_error ("Unknown function identifier: %u", current_fun_id);

}
finalize_command_after_writing(&output_sm_buf) ;
}
// output_sm_buf internally already freed appropriately.

stop_seaplus_driver (buffer);

}

One may finally compare the aforementioned generated template with - once
it has been appropriately filled by the service integrator - the final version of
this driver.

This version of course compiles, links and allows to run the foobar_test suc-
cessfully (once Seaplus is built, one may run, from the test/c-test directory,
make test for that).

If wanting to see, beyond this test, what could be an actual, more involved
driver (larger, richer, partly interrupt-based), one may refer to the Ceylan-
Mobile driver.

Wrapping Up

We believe that, in order to make a pre-existing C/C+-+ library available to
Erlang while not going the NIF route (typically when not wanting to jeopardise
the Erlang VM for that), Seaplus offers a good option in terms of safety, low
overhead and simplicity.

The overall integration process is quite streamlined, and we tried to reduce
as much as possible the size and complexity of the service-specific integration
code that remains needed.

For example one may contrast the few Foobar-specific files (foobar.hrl, foo-
bar.erl and the final foobar seaplus driver.c - i.e. the ones that shall be written
or filled by the service integrator), with:

10

https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/doc/foobar_seaplus_driver.c
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/test/c-test/foobar_seaplus_driver.c
https://github.com/Olivier-Boudeville/Ceylan-Mobile/blob/master/src/mobile_seaplus_driver.c
https://github.com/Olivier-Boudeville/Ceylan-Mobile/blob/master/src/mobile_seaplus_driver.c
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/test/c-test/foobar.hrl
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/test/c-test/foobar.erl
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/test/c-test/foobar.erl
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/test/c-test/foobar_seaplus_driver.c

e the generated ones, namely the header file for function identifier map-
ping (foobar seaplus api mapping.h) and the original driver template
(foobar seaplus_ driver.c)

e the ones implementing the Seaplus generic support, namely seaplus.hrl,
seaplus.erl, seaplus.h, seaplus.c and seaplus_parse transform.erl

As mentioned, beside the Seaplus-included Foobar example, one may refer
to the Ceylan-Mobile project for a complete, standalone use of Seaplus.

11

https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/doc/foobar_seaplus_api_mapping.h
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/doc/foobar_seaplus_driver.c
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/include/seaplus.hrl
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/src/seaplus.erl
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/include/seaplus.h
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/src/seaplus.c
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/src/seaplus_parse_transform.erl
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/tree/master/test/c-test
http://mobile.esperide.org

Licence

Seaplus is licensed by its author (Olivier Boudeville) under a disjunctive tri-
license giving you the choice of one of the three following sets of free soft-
ware/open source licensing terms:

e Mozilla Public License (MPL), version 1.1 or later (very close to the for-
mer Erlang Public License, except aspects regarding Ericsson and/or the
Swedish law)

e GNU General Public License (GPL), version 3.0 or later
e GNU Lesser General Public License (LGPL), version 3.0 or later

This allows the use of the Seaplus code in as wide a variety of software
projects as possible, while still maintaining copyleft on this code.

Being triple-licensed means that someone (the licensee) who modifies and /or
distributes it can choose which of the available sets of licence terms he/she is
operating under.

We hope that enhancements will be back-contributed (e.g. thanks to merge
requests), so that everyone will be able to benefit from them.

12

http://www.mozilla.org/MPL/MPL-1.1.html
http://www.erlang.org/EPLICENSE
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/lgpl.html

Current Stable Version, Download & Build

This integration layer, Ceylan-Seaplus, relies (only) on:
e Erlang
e a suitable C/C++ compiler, typically gcc
e the Ceylan-Myriad base layer

We prefer using GNU/Linux, sticking to the latest stable release of Erlang,
and building it from sources, thanks to GNU make.

Refer to the corresponding Myriad prerequisite section for more precise
guidelines, knowing that Ceylan-Seaplus does not need modules with condi-
tional support such as crypto or wx.

Using Cutting-Edge GIT

We try to ensure that the main line (in the master branch) always stays func-
tional. Evolutions are to take place in feature branches.

Once proper Erlang and C environments are available, the Ceylan-Myriad
repository should be cloned and built, before doing the same with the Ceylan-
Seaplus repository, like in:

$ git clone https://github.com/0livier-Boudeville/Ceylan-Myriad myriad
$ cd myriad && make all && cd ..

$ git clone https://github.com/0livier-Boudeville/Ceylan-Seaplus seaplus
$ cd seaplus && make all

(for OTP compliance, using short names, such as myriad or seaplus, for
clones rather than long ones, such as Ceylan-Myriad or Ceylan-Seaplus, is
recommended)

One can then test the whole with:

$ cd test/c-test
$ make test

Using Rebar3

Most of the usual rebar3 machinery is in place and functional, at the price of
some workarounds that are transparent for the users.

So the only Seaplus prerequisite (Myriad) and Seaplus itself can be obtained
simply thanks to:

$ git clone https://github.com/0livier-Boudeville/Ceylan-Seaplus.git seaplus
$ cd seaplus
$ rebar3 compile

Then Seaplus and its tests shall be ready for a successful execution.
Note that rebar3 is an alternate way of building Seaplus, as one may rely
directly on our make-based system instead.

13

http://www.erlang.org/
https://gcc.gnu.org
http://myriad.esperide.org
http://myriad.esperide.org#prerequisites
https://github.com/Olivier-Boudeville/Ceylan-Myriad
https://github.com/Olivier-Boudeville/Ceylan-Myriad
https://github.com/Olivier-Boudeville/Ceylan-Seaplus
https://github.com/Olivier-Boudeville/Ceylan-Seaplus
https://myriad.esperide.org

Testing Seaplus

Once Myriad and Seaplus itself have been built (for that refer to either Using
Cutting-Edge GIT or Using Rebar3), just run from the root directory of Seaplus:

$ make test

The testing shall complete successfully (if it is not the case, see our support
section).

Note

Seaplus is built and tested at each commit through continuous integra-
tion, and the same holds for its only prerequisite (Myriad). Reciprocally
this procedure applies to the projects based on it, such as Ceylan-Mobile,
so in terms of usability, confidence should be rather high.

Miscellaneous Technical Points

Seaplus Log System

When integrating a C service, the most difficult part is ensuring the sanity of
the C driver, i.e. knowing what happens within it whenever converting terms
back and forth, handling pointers, allocating memory, crashing unexpectedly,
ete. (a.k.a. the joys of C programming).

To facilitate troubleshooting, Seaplus provides a log system, allowing to
trace the various operations done by the driver (including the user code and the
Seaplus facilities on which it relies).

This log system is enabled by default. To disable it (then no runtime penalty
will be incurred), set SEAPLUS_ENABLE_LOG to O (e.g. add the -DSEAPLUS_ENABLE_L0G=0
option when compiling the library, see GNUmakevars.inc for the various build
settings).

So running a Seaplus-integrated service, with log system enabled, should
produce a seaplus-driver.N.log timestamped text log file, where N is the
(operating system level) PID® of the process corresponding to the driver.

Example content:

[2019/3/6 14:32:42] [debug] Starting Seaplus session...

[2019/3/6 14:32:42] [debug] Starting the Seaplus C driver, with a buffer of 32768 byte
[2019/3/6 14:32:42] [trace] Driver started.

[2019/3/6 14:32:42] [debug] Read 2 bytes.

[2019/3/6 14:32:42] [debug] Will read 37 bytes.

[2019/3/6 14:32:42] [debug] Read 37 bytes.

[2019/3/6 14:32:42] [trace] New command received.

[2019/3/6 14:32:42] [debug] Read integer 2.

[2019/3/6 14:32:42] [debug] Reading command: function identifier is 2.
[2019/3/6 14:32:42] [debug] 2 parameter(s) received for this function.
[2019/3/6 14:32:42] [debug] Executing bar/2.

[2019/3/6 14:32:42] [debug] Read double 2.000000e+00.

[2019/3/6 14:32:42] [debug] Read head as atom ’moderate_speed’.
[2019/3/6 14:32:42] [debug] Will write 47 bytes.

14

https://myriad.esperide.org
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/actions?query=workflow%3A%22Erlang+CI%22
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/actions?query=workflow%3A%22Erlang+CI%22
https://myriad.esperide.org
https://mobile.esperide.org/
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/GNUmakevars.inc

The end of these logs is automatically located, fetched and displayed in the
applicative traces by Seaplus in case of a driver crash, to help any troubleshoot-
ing thereof.

Beyond being able to collect traces about the behaviour of the driver, Seaplus
more generally supports general-purpose logging thanks to its use of Myr-
iad’s trace bridge (see trace bridge test.erl for an usage example thereof).
This means that by default these messages will be output on the console (thanks
to trace_utils), yet that any more advanced compliant trace system can be
used instead (see trace bridging test.erl for an usage example thereof). So any
library that is made available through Seaplus should be able to integrate nicely
into one’s logging system of choice.

Customising Function Bindings on the Erlang Side

We saw that, by default, no specific implementation is to be provided by the
user in order to include a set of Erlang-level functions into a binding - this
implementation is generated by Seaplus, and the required conversions are to be
done (only) in the driver, i.e. on the C side.

However, in some cases, it may be convenient to perform transformations as
well on the Erlang side, before and/or after that bridge, for example to adapt
parameters or results, or to throw relevant exceptions instead of tagged tuples.

Taking this service as an example, we can see that the get_backend_information/0
function is to return a version number that would be ideally a triplet (e.g.
{1,40,0}) so that we can compare versions easily. However the C-side happens
to obtain that version from the original service as a string (e.g. "1.40.0"). The
parsing/conversion of that string into a relevant version triplet could be done in
C (by building by steps a corresponding term), but it may be more convenient
to do so in Erlang (e.g. we may already have the right logic implemented for
that).

Similarly, get_hardware_information/0 may be not supported by the ac-
tual device, and one may prefer an exception to be thrown in that case rather
than having to pattern-match the result of such a call against a tagged tuple
like {ok,Result} vs {error,Error}.

This implies having the ability to override, on a per-function basis, the
default Erlang-side implementation that would be generated by Seaplus by a
user-defined one - preferably in a simple manner.

Fortunately, Seaplus offers a good support for that: should a user-provided
definition of a function to bind be found in the service module (thus: in addition
to its mere spec), it will be used (and a bit transformed automatically), instead
of relying on the implementation that would be generated by default.

For that, Seaplus provides facilities to build one’s custom implementation,
notably the seaplus:call_port_for/3 function that allows to automatically
trigger a call on the C driver side.

So the following code will trigger a call through the port and the driver, and
return its result:

get_backend_information() ->

6Including the PID in the filename allows notably, in case of driver restart, to ensure that
the logs of the new instance do not overwrite the ones of the restarted one.

15

https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/src/utils/trace_bridge.erl
https://github.com/Olivier-Boudeville/Ceylan-Myriad/blob/master/test/utils/trace_bridge_test.erl
https://github.com/Olivier-Boudeville/Ceylan-Traces/blob/master/test/trace_bridging_test.erl
https://github.com/Olivier-Boudeville/Ceylan-Mobile/blob/master/src/mobile.erl

PortKey = seaplus:get_service_port_key(),

FunctionDriverId = seaplus:get_function_driver_id(),

{Backend,VersionString} =
seaplus:call_port_for(PortKey,FunctionDriverId, _Args=[])

% From here we can parse VersionString and return a triplet:

[...]

Of course, should we have instead of:

-spec get_backend_information() -> {backend_type(), backend_version()}.
a function like:
-spec compute_sum(integer (), float()) -> float().

we could override the default Seaplus implementation with a one-liner that
would perform exactly the same, such as:

compute_sum(MyInt,MyFloat) ->
seaplus:call_port_for(seaplus:get_service_port_key(),
seaplus:get_function_driver_id(),
_Args=[MyInt,MyFloat]).

A user-defined implementation just has to know:

e what (service-specific) port key is to be used for that (needed by the
binding, knowing that multiple different services may be bridged)

e what is the function driver identifier that was allocated to that function
by Seaplus

These two information can respectively by obtained thanks to seaplus:get_service_port_key/0
and seaplus:get_function_driver_id()".
We can see then how one can insert any (Erlang) code of interest prior to
and/or after the call to the binding bridge.
Not to mention that, on the C side, thanks to the service-specific driver, the
same freedom exists as well: a call to the integrated library may be wrapped
between any kind of pre/post transformations.
As a result, if needed, any mix of Erlang and C can be used to wrap any call
to a library function made available through the binding.

Debugging a Seaplus-based Driver

Integrating C code is not so easy; more often than not, a SEGV will be encoun-
tered, and the fun begins in order to determine whom to blame, typically your
integration code (possible), Seaplus (possible as well) or the integrated library
itself (often less likely).

"These are pseudo-functions that will be appropriately replaced at compilation-time with
immediate values (thanks to the Seaplus parse transform). As a result, a rather optimal
implementation will be obtained.

16

The situation is never hopeless, though; we will take the integration of the
libgammu library done by Ceylan-Mobile on Arch Linux as a (slightly edited)
mini-tutorial.

The type of errors that we want to track down are reported as such (real-
life example of the execution of mobile_test while the Seaplus driver-level
facilities was incorrectly dealing, memory-wise, with the parameters that were

binary

[..

strings):

.

[debug] Driver check successful, returned ’This is a Ceylan-Seaplus driver generated
[debug] DriverCommand: ’/__w/Ceylan-Mobile/Ceylan-Mobile/src/mobile_seaplus_driver’.
[debug] Storing port #Port<0.10> under the service key ’_seaplus_port_for_service_mob
[debug] Starting Mobile.

[..

]

[longer session is going smoothly when...]

Sent first SMS whose report is: {success,255}.

Error: Crash of the driver port (#Port<0.10>) reported to calling process <0.9.0> (n

L

info] Library dependencies for ’/__w/Ceylan-Mobile/Ceylan-Mobile/src/mobile_seaplus_
linux-vdso.so.1l (0x00007££d62ddc000)

libseaplus-1.0.3.s0 => /__w/Ceylan-Mobile/Ceylan-Mobile/_build/default/lib/seaplus/
libGammu.so0.8 => /usr/lib/libGammu.so.8 (0x00007£4902649000)

libm.so.6 => /1ib/x86_64-1linux-gnu/libm.so.6 (0x00007£49024c6000)

libc.so0.6 => /1ib/x86_64-1linux-gnu/libc.so.6 (0x00007£4902305000)

libpthread.so.0 => /1ib/x86_64-linux-gnu/libpthread.so.0 (0x00007£49022e4000)
libglib-2.0.s0.0 => /usr/lib/x86_64-linux-gnu/libglib-2.0.s0.0 (0x00007£49021c5000)
libbluetooth.s0.3 => /usr/1ib/x86_64-linux-gnu/libbluetooth.so0.3 (0x00007£490219c00
libusb-1.0.s0.0 => /1ib/x86_64-1linux-gnu/libusb-1.0.s0.0 (0x00007£4901£83000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00007£4902802000)

libpcre.so.3 => /1ib/x86_64-1linux-gnu/libpcre.so.3 (0x00007£4901£0£000)
libudev.so.1l => /1ib/x86_64-linux-gnu/libudev.so.1 (0x00007£4901ee9000)

librt.so.1 => /1ib/x86_64-linux-gnu/librt.so.1 (0x00007£4901edf000)

While being in ’/__w/Ceylan-Mobile/Ceylan-Mobile/test’:

So

PATH is ’/__w/Ceylan-Mobile/Ceylan-Mobile/src:/usr/local/lib/erlang/erts-11.1.4/bin
LD_LIBRARY_PATH is ’/__w/Ceylan-Mobile/seaplus/src:/__w/Ceylan-Mobile/Ceylan-Mobile
init terminating in do_boot",{{nocatch,{driver_crashed,unknown_reason}}, [{seaplus,ca

the driver crashed, we do not know precisely why (yet at least some

key library information is given), and, as we will see, with such problems not
so many relevant information can be found in the Seaplus driver log (i.e. in
seaplus-driver.*.log).

17

https://wammu.eu/libgammu/
http://mobile.esperide.org

Note

The fact that such a driver log simply exists already means that this
driver could be launched at all, which is a first good news.

Indeed, if Seaplus checks whether the driver can be found (e.g. the PATH
environment variable may not be adequate) and is executable, a classical
problem is that this driver may still fail to start because at least one of
the shared libraries it relies upon cannot be found - typically because the
LD_LIBRARY_PATH environment variable has not been properly set (see
mobile_test for an example on how to deal with these topics). This
is either the Seaplus library (libseaplus-x.y.z.so) that is lacking
and/or an integrated one (like 1ibGammu.so.x here).

To better investigate such issues, now, if the seaplus_check_driver
compile flag is enabled (see SEAPLUS_CHECK_FLAGS in GNUmake-
vars.inc), then any generated Seaplus driver is automatically tested first
like if it was just a basic executable that performs a simple console out-
put and exits immediately afterwards. Once the driver proved that way
that it can be launched successfully (e.g. no lacking library dependency
in the current setting), then only it is used by Seaplus as a port to in-
teract with. This procedure is fully transparent to the Seaplus user.

Indeed these driver logs (in seaplus-driver.1037076.1og here) tell us:

[2021/2/14 12:09:21] [debug] Logger for Seaplus driver: starting new session...
[2021/2/14 12:09:21] [debug] Starting the Seaplus C driver, with an input buffer of 32
[2021/2/14 12:09:21] [trace] <Ceylan-Seaplus driver for service Ceylan-Mobile now runn
[2021/2/14 12:09:21] [debug] Starting Gammu.

[2021/2/14 12:09:21] [debug] Directing Gammu logs to Seaplus ones.

[2021/2/14 12:09:21] [debug] No Gammu state machine logs requested.

[...]

[2021/2/14 12:09:21] [debug] Reading a new command, from address 0x7ffda4845258.
[2021/2/14 12:09:21] [debug] 2 bytes to read.

[2021/2/14 12:09:21] [debug] 2 bytes actually read.

[2021/2/14 12:09:21] [debug] Read 2 bytes.

[2021/2/14 12:09:21] [debug] Command payload to read: 6 bytes.

[2021/2/14 12:09:21] [debug] 6 bytes to read.

[2021/2/14 12:09:21] [debug] 6 bytes actually read.

[2021/2/14 12:09:21] [debug] Read 6 bytes.

[2021/2/14 12:09:21] [trace] New command received.

[2021/2/14 12:09:21] [trace] Getting function information.

[2021/2/14 12:09:21] [debug] Read Erlang binary term format version number: 131, from
[2021/2/14 12:09:21] [debug] Reading command: function identifier is 16 (index is 5).
[2021/2/14 12:09:21] [debug] Normal list found at index 6, having 4 element(s).
[2021/2/14 12:09:21] [debug] 4 parameter(s) received for this function.

[2021/2/14 12:09:21] [trace] Function information obtained.

[2021/2/14 12:09:21] [debug] Function identifier is 16, arity is 4 (new index is 6).
[2021/2/14 12:09:21] [debug] Executing send_multipart_sms/4.

[2021/2/14 12:09:21] [debug] Will write 29 bytes.

[...]

We nevertheless know which API function was called when the crash hap-
pened (should you have left the corresponding LOG_DEBUG calls in your driver

18

https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/GNUmakevars.inc
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/GNUmakevars.inc

of course) - which is already a precious information.

A first difficulty is that generally a (Linux) distribution will, at least by
default, only include prebuilt binary packages whose libraries are stripped. For
example:

$ file /usr/lib/libGammu.so.8.1.40.0
/usr/1ib/libGammu.so0.8.1.40.0: ELF 64-bit LSB shared object, x86-64, \
version 1 (SYSV), dynamically linked, BuildID[shall=[...], stripped

We need the debug symbols, otherwise we will lack much crucial infor-
mation. Either your distribution provides a way of having unstripped, de-
bug/development versions of some libraries, or you find it simpler and less
system-jeopardizing to recompile your own unstripped versions, directly in your
user account.

We go for the latter, for example with:

$ mkdir ~/Software/libgammu

$ cd ~/Software/libgammu

$ git clone https://github.com/gammu/gammu.git

$./configure --enable-shared --enable-debug --enable-protection \
--prefix="/Software/libgammu

$ make all install

$ file 1ib/1ibGammu.s0.8.1.40.0

lib/1ibGammu.so0.8.1.40.0: ELF 64-bit LSB shared object, x86-64, \

version 1 (SYSV), dynamically linked, BuildID[shall=[...], with \

debug_info, not stripped

Same version number - yet much better for debugging!

Now, provided that the Seaplus driver points to the right library, we should
benefit from debug symbols.

A first option would be to run the driver through gdb (e.g. gdb -batch -ex
run mobile_seaplus_driver) when triggered by the application, yet we had
not much luck with that approach.

Examining instead the core dump corresponding to the driver crash may
offer relevant insights; provided that we find it and manage to study it.

In our case we used (as a one-liner), from the test directory, once a crash
had been triggered, the following commands:

$ rm -f mobile_seaplus.corex*

$ cp /var/lib/systemd/coredump/core.mobile_seaplus* mobile_seaplus.core.lz4
$ 1z4 mobile_seaplus.core.lz4

$ gdb mobile_seaplus_driver

Following gdb command would then bring new information:

(gdb) core mobile_seaplus.core

warning: core file may not match specified executable file.
[New LWP 11607]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/usr/lib/libthread_db.so.1".
Core was generated by ¢./mobile_seaplus_driver’.

19

https://www.gnu.org/software/gdb/

Program terminated with signal SIGSEGV, Segmentation fault.
#0 0x00007£894b2ab5a26 in malloc () from /usr/lib/libc.so.6

(gdb) bt full
#0 0x00007£894b2a5a26 in malloc () from /usr/lib/libc.so.6
No symbol table info available.
#1 0x00007£894b432742 in GSM_PackSemiOctetNumber (Number=Number@entry=0x55822a55d68c
semioctet=semioctet@entry=1) at [...]/libgammu/misc/coding/coding.c:1168
format = <optimized out>
length = 12
i = <optimized out>
skip = 0

(gdb) frame 2
#2 0x00007£7189618329 in GSM_EncodeSMSFrame () from /usr/lib/libGammu.so.8

(gdb) bt
#0 0x00007f7189305a26 in malloc () from /usr/lib/libc.so.6
[...]

While often useful, the debugger just tells us here that the SIGSEGV hap-
pened in a malloc that looks perfectly legit, and done by the inner workings
of Gammu. We suspect that this library is not involved, but that we managed
somehow to smash the heap in previous operations. Definitively not a good
news!

So now it is time to use use Valgrind in order to investigate this possible
error in memory management.

One should then have a look to the init_driver/2 function of the seaplus.erl
module, to uncomment the DriverCommand variation involving Valgrind.

Once using a Valgrind-based driver command and an updated environment
(to select your debug library rather than the system’s one), when looking at
the specified log file (/tmp/seaplus-valgrind.log) you should end up with a
report like:

==12257== Invalid read of size 1

==12257== at 0x483AC74: strlen (vg_replace_strmem.c:460)
==12257== by Ox10ACBE: main (mobile_seaplus_driver.c:438)
==12257== Address 0x51b186c is O bytes after a block of size 12 alloc’d
==12257== at 0x483777F: malloc (vg_replace_malloc.c:299)
==12257== by 0x484DD28: erl_malloc (erl_malloc.c:234)

==12257== by Ox484EF9A: erl_decode_it (erl_marshal.c:1041)
==12257== by 0x484F19A: erl_decode_it (erl_marshal.c:959)
==12257== by Ox484EE88: erl_decode_it (erl_marshal.c:1018)
==12257== by 0x485042C: erl_decode (erl_marshal.c:1111)

==12257== by 0x484B406: read_function_information (seaplus.c:498)
==12257== by 0x10A7D1: main (mobile_seaplus_driver.c:245)

We were reading the content of a binary like if it was a zero-terminated char
* (and moreover we used to wrongly take ownership of that buffer).

So neither the Ceylan-Mobile integration nor Gammu were the culprits, it
was a Seaplus bug (of course fixed since then)!

20

http://valgrind.org/
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/src/seaplus.erl

Hopefully with this example one will be less afraid to hack around shared
libraries (especially if they are open source): for each problem there are surely
means of investigation - no rocket science involved.

Testing Seaplus

Once Myriad and Seaplus itself have been built (for that refer to either Using
Cutting-Edge GIT or Using Rebar3), just run from the root directory of Seaplus:

$ make test

Note

Seaplus is built and tested at each commit through continuous integra-
tion, and the same holds for its only prerequisite (Myriad). Reciprocally
this procedure applies to the projects based on it (e.g. Mobile), so in
terms of usability, at least some confidence should exist.

Towards a more General C/C-++ Interface

Functionally, ei (not to mention Erl Interface) and the Erlang NIF support
(see also this section of our HOWTO) provide the same services, and could
probably be unified under a common API (that one day Seaplus could
provide).

This could enable the possibility of integrating the same C/C++ code seam-
lessly as a C-Node and/or as a NIF, for a greater flexibility of use.

C/C++ Code Formatting

In some cases, integrating a C/C++ open source library leads to forking it,
typically to correct/add elements. Then starting by applying cosmetic changes
such as whitespace cleanup (see the fix-whitespaces*.sh scripts in this section
of Ceylan-Hull) and proper code formatting may be useful.

For this last topic, we generally rely on clang-format and enforce the LLVM
coding style. For that, we install the clang-format-static-bin Arch AUR
package and run it like: clang-format --style=LLVM -i *.c *.h, to perform
in-place reformatting.

Issues & Planned Enhancements

e thorough testing of the C-side should be done, notably with regard to the
hunt for memory leaks; so the Valgrind-based runtime mode for the driver
is surely be useful and should be tested on a regular basis (note though
that, when Erl_Interface was used prior to ei, erl_eterm_statistics/2
and erl_eterm_release/0 were used to monitor these issues at runtime,
in debug mode - in order to ensure that on the C side no term was ever
leaked)

21

https://myriad.esperide.org
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/actions?query=workflow%3A%22Erlang+CI%22
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/actions?query=workflow%3A%22Erlang+CI%22
https://myriad.esperide.org
https://mobile.esperide.org/
http://erlang.org/doc/man/ei.html
http://erlang.org/doc/apps/erl_interface/
http://erlang.org/doc/man/erl_nif.html
https://howtos.esperide.org/Erlang.html#nif
https://hull.esperide.org/#to-fix-names-paths-permissions-content
https://clang.llvm.org/docs/ClangFormat.html
http://valgrind.org/

Support

Bugs, questions, remarks, patches, requests for enhancements, etc. are to be
sent through the project interface, or directly at the email address mentioned
at the beginning of this document.

Seaplus Inner Workings

It is mostly the one described in the Erl Interface tutorial, once switched to ei
(another source of inspiration has been this article) and augmented with con-
ventions and automated by the Seaplus parse transform as much as realistically
possible (hence a code generation that is exhaustive on the Erlang side, and par-
tial of the C side) and adapted for increased performances (notably: no extra
relay process between the user code and the port involving more messages and
processing, no string-based mapping of function signatures across the bridge -
direct integer identifiers used instead).
The parse transform just:

e derives from the type specifications of the Erlang service API (as spec-
ified by the service integrator) the implementation of the corresponding
(Erlang-side) functions (unless already available, their proper definitions
are injected in the AST of the resulting service BEAM file, and they are
exported)

e adds the facility functions to start, stop, etc. that service (they are actu-
ally directly obtained through the Seaplus include)

e generates the Seaplus service-specific C header file, ready to be included
by the C-side service driver that is to be filled by the service integrator,
based on the C template that is also generated in a proper version

As of June 2019, and related to the release of Erlang 22.0, we had to switch
from the Erl_Interface API (now made obsolete) to the lower-level ei one
(one may refer to the update_to_ei branch for that; for reference, the last
version relying on Erl_Interface, which was working great, has been marked
with the before_switch_to_ei tag).
A problem apparently induced by the direct use of ei is that, due to term_to_binary/1
mistaking the [0..255] type for the string() one, such lists had to be special-
cased, which is not so straightforward to support in a generic manner (like with
Seaplus). The whole is correctly supported by Seaplus now.

Please React!

If you have information more detailed or more recent than those presented in
this document, if you noticed errors, neglects or points insufficiently discussed,
drop us a line! (for that, follow the Support guidelines).

Ending Word

Have fun with Ceylan-Seaplus!

22

https://github.com/Olivier-Boudeville/Ceylan-Seaplus
http://erlang.org/doc/tutorial/erl_interface.html
https://erlangcentral.org/wiki/How_to_use_ei_to_marshal_binary_terms_in_port_programs
https://github.com/Olivier-Boudeville/Ceylan-Seaplus/blob/master/src/seaplus_parse_transform.erl

Seaplus ®

23

	Table of Contents
	Overview
	Usage
	Wrapping Up
	Licence
	Current Stable Version, Download & Build
	Using Cutting-Edge GIT
	Using Rebar3
	Testing Seaplus

	Miscellaneous Technical Points
	Seaplus Log System
	Customising Function Bindings on the Erlang Side
	Debugging a Seaplus-based Driver
	Testing Seaplus
	Towards a more General C/C++ Interface
	C/C++ Code Formatting

	Issues & Planned Enhancements
	Support
	Seaplus Inner Workings
	Please React!
	Ending Word

